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Abstract. Based on the (approximate) chiral symmetry of QCD Lagrangian and the bound state assump-
tion of effective meson fields, a nonlinearly realized effective chiral Lagrangian for meson fields is obtained
from integrating out the quark fields by using the new finite regularization method. As the new method
preserves the symmetry principles of the original theory and meanwhile keeps the finite quadratic term
given by a physically meaningful characteristic energy scale Mc, it then leads to a dynamically spontaneous
symmetry breaking in the effective chiral field theory. The gap equations are obtained as the conditions
of minimal effective potential in the effective theory. The instanton effects are included via the induced
interactions discovered by ’t Hooft and found to play an important role in obtaining the physical solutions
for the gap equations. The lightest nonet scalar mesons (σ, f0, a0 and κ) appearing as the chiral partners
of the nonet pseudoscalar mesons are found to be composite Higgs bosons with masses below the chiral
symmetry breaking scale Λχ ∼ 1.2 GeV. In particular, the mass of the singlet scalar (or the σ) is found to
be mσ � 677 MeV.

PACS. 12.38.Aw – 11.30.Qc – 14.40.-n – 14.65.Bt

1 Introduction

The strong interaction between quarks is described by the
SU(3) gauge theory, which is known as the chromody-
namics (QCD). The asymptotic behavior of strong inter-
action at high energy has been successfully characterized
by perturbative QCD. Though QCD was motivated from
the studies of low energy dynamics of hadrons, the low
energy dynamics of QCD remains unsolved due to the
nonperturbative effects of strong interactions. In general,
hadrons are considered to be the bound states formed
by the quarks and gluons through the nonperturbative
QCD effects. For lightest pseudoscalar mesons, the suc-
cess of current algebra [1] with PCAC [2] is mainly be-
cause it reflects the (approximate) chiral invariance of the
QCD lagrangian. While the (approximate) chiral symme-
try U(3)L × U(3)R is found to be strongly broken down
due to nonperturbative QCD effects. Many efforts have
been paid to the issues such as: how the chiral symme-
try is dynamically broken down [3], how the instanton
plays the role as it represents a quantum topological so-
lution of nonperturbative QCD [4], whether the effective
meson theory should be realized as a linear σ model [5]
or a non-linear σ model, whether the lowest lying U(3)V

nonet scalar mesons corresponds to the chiral partners of
the lowest lying nonet pseudoscalar mesons, whether the
isospinor scalar mesons K∗

0 (1430) [6] are the lowest lying
isospinor scalar mesons or there should exist other lighter

isospinor scalar mesons κ0 [7] that constitute the lowest ly-
ing nonet scalar mesons together with the isovector scalar
mesons a0(980), the isoscalar scalar meson f0(980) and
the singlet scalar meson f0(400 − 1200) (or the σ) [8].

Theoretically, some phenomenological models have
been constructed to investigate the scalar sector. In this
paper, we shall adopt the new finite regularization method
proposed recently in [10] to derive an effective chiral La-
grangian for scalar and pseudoscalar mesons based on the
(approximate) chiral symmetry of QCD Lagrangian and
the bound state assumption of effective meson fields with
including the instanton induced interactions discovered by
t’Hooft [4,11]. For the purpose of the present paper, we
then pay attention to study the chiral symmetry break-
ing mechanism and to predict the masses and mixing for
the lightest scalar mesons. The advantages of the new fi-
nite regularization method are that it allows us to obtain
the effective chiral Lagrangian which preserves gauge and
Lorentz as well as translational invariance and meanwhile
keeps the physically meaningful finite quadratic term. As a
consequence, it leads the resulting effective chiral field the-
ory to have a dynamically spontaneous symmetry break-
ing mechanism. Specifically, the gap equations are ob-
tained as the conditions of minimal effective potential af-
ter spontaneous symmetry breaking. The important point
in the new finite regularization method is that there ap-
pear two intrinsic mass scales, i.e., the characteristic en-
ergy scale (CES) Mc and the sliding energy scale (SES)
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µs. Here the CES Mc is the basic energy scale below which
the effective field theory becomes meaningful as the low
energy dynamics of nonperturbative QCD. The SES µs

reflects the energy scale on which the interesting physics
processes are concerned. Because of these interesting fea-
tures in the new finite regularization method, it mani-
festly distinguishes from either the dimensional regulariza-
tion which cannot lead to the right gap equations though
it preserves gauge and Lorentz invariance, or the naive
cutoff regularization which destroys the gauge invariance
though it could lead to the required gap equations. It will
explicitly be shown that the resulting effective chiral La-
grangian is a nonlinearly realized chiral model, and the
(approximate) chiral symmetry U(3)L × U(3)R of QCD
Lagrangian is broken down through a dynamically spon-
taneous symmetry breaking mechanism. Here the lightest
U(3)V nonet scalar mesons appearing as the chiral part-
ners of the nonet pseudoscalar mesons are the composite
Higgs bosons. Of particular, the instanton effect is found
to play an important role in the dynamically spontaneous
breaking of chiral symmetry U(3)L ×U(3)R. As expected,
it not only provides a natural explanation why the sin-
glet pseudoscalar meson η′ is much heavier than the octet
pseudoscalar mesons, but also leads to a reasonable predic-
tion for the mass spectrum of nonet scalar mesons. Actu-
ally, it is the instanton effect that makes the singlet scalar
meson (the σ) to be much lighter than the octet scalar
mesons, which is in contrast to the nonet pseudoscalar
meson sector. In addition, it also results in consistent pre-
dictions for the light quark masses and the mixing angles
between the singlet and octet neutral scalar and pseu-
doscalar mesons.

2 Effective chiral Lagrangian and dynamically
spontaneous symmetry breaking

Let us begin with the QCD Lagrangian with only light
quarks

LQCD = q̄γµ(i∂µ + gsG
a
µT a)q − q̄Mq − 1

2
trGµνGµν (1)

where q = (u, d, s) denote three light quarks and the sum-
mation over color degrees of freedom is understood. Ga

µ

are the gluon fields with SU(3) gauge symmetry and gs is
the running coupling constant. M is the light quark mass
matrix M = diag.(m1, m2, m3) ≡ diag.(mu, md, ms). In
the limit mi → 0 (i=1,2,3), the Lagrangian has global
U(3)L × U(3)R symmetry. It is known that the chiral
U(1)L×U(1)R symmetry is broken down to U(1)V symme-
try due to the quantum U(1)A anomaly of QCD, namely
the so-called instanton effect. The instanton-induced in-
teractions were found to have the following form [4,11]

Linst = κinste
iθinst det(−q̄RqL) + h.c. (2)

where κinst is a constant and contains the factor e−8π2/g2
.

Obviously, this instanton term breaks the chiral symmetry
U(1)A.

The basic assumption in our present consideration is
that at the chiral symmetry breaking scale (∼ 1 GeV) the
effective Lagrangian contains not only the quark fields but
also the effective meson fields describing bound states of
strong interactions of gluons and quarks. After integrating
over the gluon field at high energy scales, the effective
Lagrangian at low energy scale is expected to have the
following general form when keeping only the lowest order
nontrivial terms

Leff (q, q̄, Φ) = q̄γµi∂µq + q̄LγµAµ
LqL + q̄RγµAµ

RqR

− [ q̄L(Φ − M)qR + h.c. ] + µ2
mtr

(
ΦM† + MΦ†)

−µ2
f trΦΦ† + µinst (det Φ + h.c.) (3)

where Φij are the effective meson fields which basically
correspond to the composite operators q̄RjqLi. AL and
AR are introduced as the external source fields. The in-
stanton induced interaction κinste

iθinst det(−q̄RqL) has be
mimicked by the term µinste

iθinst det Φ [11]. It is noticed
that without considering the instanton-induced interac-
tion term (or taking κinst = 0), the integral over the ef-
fective meson fields Φ(x) leads to the four fermion inter-
action term and the resulting effective Lagrangian is then
related to the Nambu-Jona-Lasinio model [3]. Therefore
without the instanton induced interactions, the above La-
grangian can be regarded as the bosonized Nambu-Jona-
Lasinio model with the quark mass being given by

(
µ2

m

µ2
f

− 1

)

M (4)

it is clear that when taking µ2
m = 2µ2

f , we then arrive
at, after integrating over the effective meson field Φij , the
well-known four quark interacting Nambu-Jona-Lasinio
model with the well defined QCD current quark masses
M . In this sense, the effective meson fields Φij may be
regarded as the auxiliary fields. Namely there is no ki-
netic term for the effective meson fields in our present
considerations. Also the high order terms for the effective
meson fields with dimension being equal and larger than
four are not included assuming they are small and can
be generated in loop diagrams. This indicates that only
the lowest order nontrivial fermionic interaction terms are
considered after integrating over the gluon field. For our
purpose in the present paper, the vector and axial vec-
tor mesons are also not considered, only the scalar and
pseudoscalar mesons are concerned. As the pseudoscalar
mesons are known to be the would-be Goldstone bosons,
the effective chiral field theory is naturally to be realized
as a nonlinear model. Thus we may express the 18 effec-
tive meson fields of the 3 × 3 complex matrix Φ(x) into
the following form

Φ(x) = ξL(x)φ(x)ξ†
R(x),

U = ξL(x)ξ†
R(x) = ξ2

L(x)ei
2Π(x)

f

φ†(x) = φ(x) =
a=9∑

a=0

φa(x)T a,
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Π†(x) = Π(x) =
a=9∑

a=0

Πa(x)T a (5)

where T a (a = 0, 1, · · · , 8) with [T a, T b] = ifabcT c and
2trT aT b = δab are the nine generators of U(3) group. The
fields Πa(x) represent the pseudoscalar mesons and φa(x)
the corresponding scalar mesons. f is a constant with mass
dimension.

The effective chiral Lagrangian for mesons is then ob-
tained from integrating over the quark fields. The proce-
dure for deriving the effective chiral Lagrangian of mesons
can be formally expressed in terms of the generating func-
tionals via the following relations

1
Z

∫
DGµDqDq̄ei

∫
d4xLQCD

=
1
Z̄

∫
DΦDqDq̄ei

∫
d4xLeff (q,q̄,Φ)

=
1

Zeff

∫
DΦei

∫
d4xLeff (Φ) (6)

By applying the Schwinger’s proper time technique [12]
to the determinant of Dirac operator and using the new fi-
nite regularization method proposed in [10] for momentum
integrals, we arrive at the following effective Lagrangian
(a detailed derivation is presented in the appendix)

Leff (Φ) =
1
2

Nc

16π2 trT0 [ DµΦ̂DµΦ̂†

+ DµΦ̂†DµΦ̂ − (Φ̂Φ̂† − M̄2)2 − (Φ̂†Φ̂ − M̄2)2 ]

+
Nc

16π2 M2
c trT2 [ (Φ̂Φ̂† − M̄2) + (Φ̂†Φ̂ − M̄2) ]

+ µ2
mtr

(
ΦM† + MΦ†)

− µ2
f trΦΦ† + µinst (det Φ + h.c.) (7)

with Φ̂ = Φ − M , and M̄ = V − M = diag.(m̄1, m̄2, m̄3).
Here m̄i = vi − mi is regarded as the dynamical quark
masses, vi is supposed to be the vacuum expectation val-
ues (VEVs) of the scalar fields, i.e., < φ >= V =
diag.(v1, v2, v3) and to be determined from the conditions
of minimal effective potential in the effective chiral La-
grangian Leff (Φ). Here we have only kept the lowest terms
needed for our purpose in the present paper. Where the
two diagonal matrices T0 = diag.(T (1)

0 , T
(2)
0 , T

(3)
0 ) and

T2 = diag.(T (1)
2 , T

(2)
2 , T

(3)
2 ) arise from the integral over

the loop momentum by using the new finite regulariza-
tion method. They are given by the following form

T
(i)
0 (

µ2
i

M2
c

) = ln
M2

c

µ2
i

− γw + y0(
µ2

i

M2
c

) (8)

T
(i)
2 (

µ2
i

M2
c

) = 1 − µ2
i

M2
c

[ ln
M2

c

µ2
i

− γw + 1 + y2(
µ2

i

M2
c

) ] (9)

with

y0(x) =
∫ x

0
dσ

1 − e−σ

σ
(10)

y1(x) =
1
x

(
e−x − 1 + x

)
(11)

y2(x) = y0(x) − y1(x) (12)

Note that Mc is the characteristic energy scale from
which the nonperturbative QCD effects start to play an
important role and the effective chiral field theory is con-
sidered to be valid below the scale Mc. We have also used
the definitions

µ2
i = µ2

s + m̄2
i , m̄i = vi − mi (13)

with µ2
s the sliding energy scale arising from the new finite

regularization, it is usually taken to be at the energy scale
at which the physical processes take place. As it is easy
to see that the equal mass case mu = md = ms must lead
to the equal VEVs v1 = v2 = v3, one may then write the
VEVs in terms of the following general form

vi = vo + β mi, i = 1, 2, 3 or i = u, d, s (14)

Let us now focus on the effective potential which may
be reexpressed as the following general form

Veff (Φ) = −trµ̂2
m

(
ΦM† + MΦ†)+

1
2
trµ̂2

f (ΦΦ† + Φ†Φ)

+
1
2
trλ[ (Φ̂Φ̂†)2 + (Φ̂†Φ̂)2 ] − µinst (det Φ + h.c.) (15)

with µ̂2
f , µ̂2

m and λ the three diagonal matrices

µ̂2
f = µ2

f − Nc

8π2

(
M2

c T2 + M̄2T0
)

(16)

µ̂2
m = µ2

m − Nc

8π2

(
M2

c T2 + M̄2T0
)

(17)

λ =
Nc

16π2 T0 (18)

Taking the nonlinear realization Φ(x) = ξL(x)φ(x)ξ†
R(x)

with supposing that the minimal of the above effective po-
tential occurs at the point < φ >= V = diag.(v1, v2, v3),
and writing the scalar fields as

φ(x) = V + ϕ(x) (19)

we then obtain three minimal conditions

−
(
µ̂2

f

)

i
vi +

(
µ̂2

m

)
i
mi − 2λim̄

3
i + µinstv̄

3/vi = 0,

i = 1, 2, 3 (20)

with v̄3 = v1v2v3. For convenience of discussions, it is
useful to decompose the diagonal matrices µ2, µ̂2

f , µ̂2
m and

λ into two parts that are independent of and dependent
on the current quark masses mi (i = u, d, s). Practically,
it can be done by making an expansion in terms of the
current quark masses

µ2
i = µ2

o + 2(β − 1)vom̃i, µ2
o = µ2

s + v2
o ,

m̃i = mi[1 + (β − 1)mi/(2vo)] (21)



s4 Y.-B. Dai and Y.-L. Wu: Dynamically spontaneous symmetry breaking and masses of lightest nonet scalar mesons

(
µ̂2

f

)
i
= µ̄2

f + 2µfom̃i[ 1 +
∑

k=1

αk

(
m̃i

µo

)k

(β − 1)k ]

(22)

(
µ̂2

m

)
i
= µ̄2

m + 2µfom̃i[ 1 +
∑

k=1

αk

(
m̃i

µo

)k

(β − 1)k ]

(23)

λi = λ̄ − λo

∑

k=1

βk

(
m̃i

µo

)k

(β − 1)k, λo =
Nc

16π2

(24)

The unknown seven parameters are µ̄2
f , µ̄2

m, µinst, vo, β µs

and λ̄ in addition to the three current quark masses. Three
of them are determined by the three minimal conditions.
µinst is in principle calculable and will actually be fixed
by the η′ mass. vo is related to the pion decay constant f .
λ̄ is given by the characteristic energy scale Mc at which
the effective chiral field theory become meaningful, namely
Mc is at the same order as the chiral symmetry breaking
scale Mc ∼ 4πf . The sliding energy scale µs runs to the
scale at the order of dynamically spontaneous symmetry
breaking scale vo.

Solving the three equations of the minimal conditions
with keeping only the nonzero leading terms in the expan-
sion of current quark masses, we then obtain the following
three constraints from the minimal conditions

vo(1 − εo)(β − 1)2/β2 � vinst/3 (25)

2λ̄(vinstv3 − v2
o) � µ̄2

f (26)

2βλ̄v2
o + 6(β − 1)λ̄v2

o + 2λo(β − 1)v2
o(1 − 2v2

o

µ2
o

)

� µ̄2
m − 2βµ̄2

f (27)

where we have neglected the small quark masses mu and
md and introduced the definitions

εo =
λo

λ̄
[
(

2v2
o

µ2
o

− 1
)(

1 − 1
3

v2
o

µ2
o

)
+ r

−1
3

2vo

µo
α1(1 − r) + (β − 1)

(
2v2

o

µ2
o

− 1
3

λ̄

λo

)
ms

vo
] (28)

µfo ≡ 2λovo(β − 1)(1 − r) (29)
µinst ≡ 2λ̄vinst (30)

Here r and α1 are given by

r =
µ2

s

µ2
o

− µ2
o

M2
c

[1 +
µ2

s

µ2
o

+ O(
µ2

o

M2
c

)] (31)

α1(1 − r) =
2vo

µo
[

µ2
s

2µ2
o

+ O(
µ2

o

M2
c

) ] (32)

Note that in obtaining (25) one needs to keep terms to
the order of m2

i . The parameters µ̄2
m and µ̄2

f are related
to the initial parameters in the effective potential and the
characteristic energy scale via the following relations

µ̄2
f = µ2

f − Nc

8π2

(
M2

c T2(
µ2

o

M2
c

) + v2
oT0(

µ2
o

M2
c

)
)

(33)

µ̄2
m = µ2

m − Nc

8π2

(
M2

c T2(
µ2

o

M2
c

) + v2
oT0(

µ2
o

M2
c

)
)

(34)

λ̄ =
Nc

16π2 T0(
µ2

o

M2
c

), (35)

T0(
µ2

o

M2
c

) = ln
M2

c

µ2
o

− γw + y0(
µ2

o

M2
c

)

From the normalization of the kinetic term for the pseu-
doscalar mesons, we have the relation

λ̄v2
o = f2/4 (36)

Note that when ignoring the instanton effects, i.e., tak-
ing vinst = 0, one sees that the minimal conditions lead
to the usual gap equation

Nc

8π2µ2
f

[ M2
c − µ2

o

(
ln

M2
c

µ2
o

− γw + 1 + y2(
µ2

o

M2
c

)
)

] = 1

However, the anomalous large mass of η′ implies that the
instanton effects are important. Therefore the conditions
of minimal effective potential must be modified after in-
cluding the instanton effects . They may be regarded as
the generalized gap equations and their effects will be
discussed in the next section. So far, we have explicitly
shown the mechanism of dynamically spontaneous sym-
metry breaking.

3 Masses of light quarks and lightest nonet
scalar mesons

To make numerical predictions for the masses of scalar and
pseudoscalar mesons, one needs to solve the generalized
gap equations. For that one must have the knowledge for
the three initial parameters µ2

f , µ2
m and µinst appearing in

the original effective Lagrangian. In addition, one should
also know the intrinsic mass scales Mc and µs. In principle,
they all should be calculable from QCD and depend on the
QCD running scale µ the basic QCD scale ΛQCD as well
as the light quark masses mu, md and ms. Practically,
one may choose the parameters vo, β, Mc, µs and the
light quark masses as input, this is because such a set of
parameters are much directly related to the low energy
phenomena.

As we have shown in the previous section that to have
well defined QCD current quark masses without consider-
ing the instanton interaction term, it requires that

(
µ2

m

µ2
f

− 1

)

M = M, i.e. µ2
m = 2µ2

f (37)

which reduces one parameter.
Also when omitting the instanton interaction term, the

auxiliary fields Φij are found from the effective Lagrangian
equation (3) to be given by the quark fields as follows

Φij = − 1
µ2

f

q̄RjqLi +
µ2

m

µ2
f

Mij (38)
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Assuming the quark condensate is almost flavor indepen-
dent, i.e., < ūu >�< d̄d >�< s̄s >, we then obtain by
combining the above condition µ2

m = 2µ2
f the second con-

dition

β =
µ2

m

µ2
f

= 2 (39)

so that the dynamical quark masses have the simple form

m̄i = vi − mi = vo + (β − 1)mi = vo + mi (40)

which ( i = u, d, s) may also be regarded as a kind of
constituent quark masses after dynamically spontaneous
symmetry breaking. Where vo is caused by the quark con-
densate

vo = − 1
2µ2

f

< q̄q >, q = u, d, s (41)

It is supposed that the inclusion of the instanton inter-
action term do not significantly change the above two
conditions. Namely, we take β � µ2

m/µ2
f � 2 as a good

approximation to reduce two parameters. This is because
the instanton term is found to be much smaller than the
quadratic term µinst/µf � 0.06 (see below).

To determine the remaining parameters, we consider
the following constraints. Two constraints arise from the
pseudoscalar sector. One is due to the normalization of
the kinetic term (36)

T0v
2
o =

(4πf)2

4Nc
≡ Λ̄2

f � (340MeV)2 (42)

The other is from the mass matrix for the isoscalar and
singlet pseudoscalar mesons η8 and η0 (see below), the
trace of the mass matrix leads to

vinstv3 =
1
6
(m2

η8
+ m2

η0
− 2m2

K)

=
1
6
(m2

η + m2
η′ − 2m2

K) � (348MeV)2 (43)

Where we have used f � 94 MeV and the experimental
data mK � 496 MeV, mη � 548 MeV and mη′ � 958
MeV.

In the scalar sector, the well measured scalar meson
a0(980) will provide a constraint to the VEV vo with
vo ∼ Λ̄f = 340 MeV. This indicates that no large loop
corrections arise from the logarithmic term in our present
considerations, namely

T0(µ2
o/M

2
c ) � 1 i.e. λ̄ � λo = Nc/(16π2) (44)

With the above constraints together with the three
minimal conditions, the parameters are determined to be

vo � Λ̄f � 340MeV

µ2
m = 2µ2

f � (204MeV)2

Mc � 922MeV, µs � 333MeV

vinst � 210MeV, or µinst = 2λ̄vinst � 8.0MeV

< q̄q >= −(242MeV )3, ms � 117MeV (45)

Here the resulting quark condensation is consistent with
the one from QCD.

We are now in the position to make predictions on the
masses and mixing for the scalar mesons, pseudoscalar
mesons and/or light quark masses. To be manifest, let us
first write down the scalar and pseudoscalar meson matri-
ces

√
2ϕ =









a0
0√
2

+ 1√
6
f8 +

√
1
3fs a+

0 κ+
0

a−
0 − a0

0√
2

+ 1√
6
f8 +

√
1
3fs κ0

0

κ−
0 κ̄0

0 − 2√
6
f8 +

√
1
3fs









,

(46)
and

√
2Π =









π0√
2

+ 1√
6
η8 +

√
1
3η0 π+ K+

π− − π0√
2

+ 1√
6
η8 +

√
1
3η0 K0

K− K̄0 − 2√
6
η8 +

√
1
3η0









,

(47)
Keeping to the leading order of current quark masses,

we have

m2
π± � 2µ3

P

f2 (mu + md) (48)

m2
K± � 2µ3

P

f2 (mu + ms) (49)

m2
K0 � 2µ3

P

f2 (md + ms) (50)

m2
η8

� 2µ3
P

f2 [
1
3
(mu + md) +

4
3
ms ]

=
1
3
(4m2

K − m2
π) (51)

m2
η8η0

� −2µ3
P

f2

√
2

3
[ 2ms − (mu + md) ]

= −2
√

2
3

(m2
K − m2

π) (52)

m2
η0

� 2µ3
P

f2

2
3
(mu + md + ms) +

12v̄3

f2 µinst

=
1
3
(2m2

K + m2
π) +

24v̄3

f2 λ̄vinst (53)

where µ3
P is given by

µ3
P = (µ̄2

m + 2λ̄v2
o)vo � 12λ̄v3

o � 3vof
2 (54)

By taking the numerical value for the relevant parameter
vo � 340 MeV and using the experimental data for the
pion meson mass mπ � 139 MeV and the mass square
difference between the neutral and charged kaons m2

K0 −
m2

K± � (63MeV)2, we then arrive at the following predic-
tions

mu + md ≡ 2m̄ � 9.5 MeV,

md − mu � 1.95MeV (55)
mu � 3.8MeV, md � 5.7MeV,

ms/md � 20.5 (56)
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for the up and down quark masses, and

mK0 � 500MeV, mK± � 496MeV (57)
mη � 503MeV, mη′ � 986MeV (58)

for the pseudoscalar meson masses, as well as

tan 2θP = 2
√

2[1 − 9vinstv3

m2
K − mπ2

]−1, θP � −18o (59)

for the mixing angle θP between η and η′ mesons, which
is defined as

η8 = cos θP η + sin θP η′

η0 = cos θP η′ − sin θP η (60)

The masses and mixing of scalar mesons are given by

m2
a±
0

� m2
a0
0

� 2(2m̄u + m̄d)m̄u + 2vinstv3 (61)

m2
k±
0

� 2(2m̄u + m̄s)m̄u + 2vinstv2 (62)

m2
k0
0

� 2(2m̄d + m̄s)m̄d + 2vinstv1 (63)

m2
f8

� m̄2
u + m̄2

d + 4m̄2
s +

2
3
vinst(2v1 + 2v2 − v3)(64)

m2
fs

� 2(m̄2
u + m̄2

d + m̄2
s) − 4

3
vinst(v1 + v2 + v3) (65)

m2
fsf8

�
√

2(2m̄2
s − m̄2

u − m̄2
d)

−
√

2
3

vinst(2v3 − v1 − v2) (66)

tan 2θS =
2m2

fsf8

m2
fs

− m2
f8

(67)

Here the mixing angle θS is defined as

f8 = cos θS f0 + sin θS σ

fs = cos θS σ − sin θS f0 (68)

where we have ignored the mixing between a0
0 and f8 (f0)

as it is proportional to v1 − v2 ∼ mu − md. Inputting the
values m̄u � m̄d = vo + m̄ � 345 MeV, m̄s = vo + ms �
457 MeV, vinstv3 � (348MeV )2, v1 � v2 � vo + 2m̄ �
350 MeV, vinst � 210 MeV, we arrive at the following
numerical predictions for the masses and mixing of the
scalar mesons

ma0 � 978 MeV, mexp.
a0

= 984.8 ± 1.4 MeV[6] (69)
mκ0 � 970 MeV, mexp.

κ0
= 797 ± 19 ± 43 MeV[7](70)

mf0 � 1126 MeV, mepx.
f0

= 980 ± 10 MeV[6] (71)

mσ � 677 MeV, mexp.
σ = (400 − 1200) MeV[6] (72)

θS � −18o (73)

The above predictions are at the leading order approxi-
mation in the expansion of current quark masses and also
at the tree level in the effective chiral field theory. Now
some important features become clear. In contrast to the
singlet pseudoscalar meson η′ which is much heavier than
the η meson, the singlet scalar meson σ is much lighter

than f0. Also the isospinor scalar meson κ0 is below 1
GeV and likely lighter than the isovector scalar meson a0.
This feature has also been observed by many groups [13].
All such features are mainly due to the instanton effects,
which can easily be seen from their mass formulae eqs.(61-
66). Note that the isoscalar meson mass mf0 is somehow
larger than the experimental data by about 15% at the
leading order, it is of interest to investigate the contribu-
tions from possible higher order terms.

4 Conclusions

Starting from the effective Lagrangian of chiral quarks
with effective meson fields as bosonized auxiliary fields
at the chiral symmetry breaking scale, which is assumed
to be resulted from integrating out the gluon fields, a
nonlinearly realized effective chiral Lagrangian for me-
son fields has been obtained from integrating over the
quark fields by using the new finite regularization method.
It has been shown that the resulting effective chiral La-
grangian can lead to a dynamically spontaneous symmetry
breaking mechanism. This is because the new finite reg-
ularization method keeps the physically meaningful finite
quadratic term and meanwhile preserves the symmetry
principles of original theory. After the chiral symmetry
U(3)L × U(3)R is spontaneously broken down, the effec-
tive chiral Lagrangian contains, in addition to the three
current quark masses mu, md and ms, four basic parame-
ters, vo, β, Mc and µs. Whereas three of them (vo, Mc and
µs ) are determined through the three minimal conditions
in terms of the two parameters µ2

m = 2µ2
f and µinst which

are in principle calculable from QCD and given in terms
of the QCD parameters gs(µ) (or µ) and ΛQCD. The pa-
rameter β is also fixed by the ratio β = µ2

m/µ2
f = 2 based

on the fact that the quark condensates are almost flavor
independent. It has been seen that the four parameters
vo, β, Mc and µs are reduced to two independent param-
eters and well determined from the low energy dynamics
of mesons. Of interest, they lead to consistent predictions
for the light quark masses and pseudoscalar meson masses
as well as for the lowest nonet scalar meson masses and
mixing at the leading order. In particular, the resulting
quark condensate is consistent with the QCD prediction.
In general, once the basic parameters at the leading terms
are determined, all the higher order corrections from mo-
mentum and quark mass expansions can be systematically
calculated based on the present considerations without in-
volving any additional parameters. This is because all the
couplings of higher order corrections in the momentum
expansion only depend on the independent parameters vo

(or µs) and Mc. More general description on the effec-
tive chiral quantum field theory of mesons with including
possible high order terms and also the vector and axial
vector mesons is beyond our present purpose and will be
considered elsewhere.
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Appendix: Derivation of the effective chiral
Lagrangian by new finite regularization
method

To obtain the effective chiral Lagrangian for mesons given
in the text, we need to integrate over the quark fields
(which is equivalent to calculate the Feynman diagrams
of quark loops) from the following chiral Lagrangian

Lq
eff = q̄γµi∂µq + q̄LγµAµ

LqL + q̄RγµAµ
RqR

− [ q̄L(x)(Φ(x) − M)qR(x) + h.c. ]
(74)

The above Lagrangian is invariant under transformations
of the global chiral symmetry U(3)L × U(3)R in the limit
mi → 0 (i = u, d, s),

qL(x) ≡ P+q(x) → gLqL(x),
qR(x) ≡ P−q(x) → gRqR(x),

Φ(x) → gLΦ(x)g†
R (75)

Using the method of path integral, the effective Lagran-
gian of mesons is evaluated via

∫
[dΦ]exp{i

∫
d4xLM}

= Z−1
0

∫
[dΦ][dq][dq̄]exp{i

∫
d4xLq

eff}. (76)

The functional integral of right hand side is known as the
determination of the Dirac operator

∫
[dq][dq̄]exp{i

∫
d4xLq

eff} = det(iD). (77)

To obtain the effective action, it will be useful to go to
Euclidean space via the rule γ0 → iγ4, G0 → iG4, x0 →
−ix4 and to define the Hermitian operator

SM
E =

∫
d4xELM

E = ln det iDE

=
1
2
[ln det iDE + ln det(iDE)†]

+
1
2
[ln det iDE − ln det(iDE)†] ≡ SM

ERe + SM
EIm (78)

with

SM
ERe =

∫
d4xELM

Re =
1
2

ln det(iDE(iDE)†) − lnZ0

≡ 1
2

ln det∆E − lnZ0

SM
EIm =

∫
d4xELM

Im =
1
2

ln det(iDE/(iDE)†)

≡ 1
2

ln detΘE (79)

where the imaginary part LM
Im appears as a phase which is

related to the anomalous terms and will not be discussed

in the present paper. The operators in the Euclidean space
are given by

iDE = −iγ · ∂ − γ · ALPL − γ · ARPR + Φ̂PR + Φ̂†PL

(iDE)† = iγ · ∂ + γ · ARPL + γ · ALPR

+Φ̂†PR + Φ̂PL (80)

with Φ̂ = Φ − M and P± = (1 ± γ5)/2. ∆E is regarded
as a matrix in coordinate space, internal symmetry space
and spin space. Noticing the following identity

ln detO = Tr lnO (81)

with Tr being understood as the trace defined via

TrO = tr

∫
d4x < x|O|y > |x=y (82)

Here tr is the trace for the internal symmetry space and
< x|O|y > is the coordinate matrix element defined as

< x|Oij |y >= Oij(x)δ4(x − y) ,

δ4(x − y) =
∫ ∞

−∞

d4k

(2π)4
eik·(x−y) (83)

For the derivative operator, one has in the coordinate
space

< x|∂µ|y >= δ4(x − y)(−ikµ + ∂µ
y ) (84)

With these definitions, the operator ∆E in the Eu-
clidean space is given by

< x|∆E |y >= δ4(x − y)∆k
E (85)

with

∆k
E = k2 + ∆E ≡ ∆0 + ∆̃E (86)

∆0 = k2 + M̄2 (87)

∆̃E =
(
Φ̂Φ̂† − M̄2

)
PR +

(
Φ̂†Φ̂ − M̄2

)
PL

−iγ · DEΦPL − iγ · DEΦ†PR − σµνFRµνPL

−σµνFLµνPR + (iDEµ)(iDµ
E) + 2k · (iDE) (88)

with

iDEΦ = i∂Φ + ALΦ − ΦAR (89)
iDE = i∂ + ARPL + ALPR (90)

Where M̄ is the supposed vacuum expectation values
(VEVs) of Φ̂, i.e., < Φ̂ >= M̄diag.(m̄u, m̄d, m̄s). With this
convention, it will be seen that the minimal conditions of
the effective potential are completely determined by the

lowest order terms up to the dimension four
(
Φ̂Φ̂† − M̄2

)2

in the effective chiral field theory of mesons. Regarding ∆̃E

as the interaction term and taking

Z0 = (det ∆0)1/2 (91)
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Thus the effective action in the Euclidean space can be
written as

SM
ERe =

1
2

ln det∆E(∆0)−1 =
1
2
Tr ln

∆E

∆0
(92)

Using Schwinger’s proper time technique [12]

ln∆ −
∫ ∞

τ0

dτ

τ
e−τ∆ −

(

ln τ0 + γ +
∞∑

n=1

(−τ0∆)n

n · n!

)

(93)

the effective action is found in the coordinate space to be

SM
ERe = −1

2

∫
d4xE

d4k

(2π)4
tr

∫ ∞

0

dτ

τ

(
e−τ∆k

E − e−τ∆0

)

= −1
2

∫
d4xE

d4k

(2π)4
tr

∫ ∞

0

dτ

τ
e−τ∆0

(
e−τ∆̃k

E− τ2
2 [M̄2 ∆̃k

E ] − 1
)

(94)

where we have used the identity eAeB = eA+B+ 1
2 [A B].

Treating ∆̃E as perturbative interaction and making an
expansion, we have

SM
ERe = −1

2

∫
d4xE

d4k

(2π)4
tr

∫ ∞

0

dτ

τ
e−τ∆0

∞∑

n=1

(−1)n

n!
τn[∆̃k

E − τ

2
[M̄2 ∆̃k

E ]n (95)

For the given order of expansion, the integral over τ can
be performed by using the following integral

∫ ∞

0

dτ

τ
e−τ∆0τn = (n − 1)!∆−n

0 (96)

For the integral over momentum, which involves quad-
ratically and logarithmic divergence. In order to maintain
the gauge invariance and meanwhile keep the quadratic
term, the new finite regularization method proposed re-
cently in [10] should be adopted for the momentum inte-
gral.

I2 =
∫

d4k

(2π)4
(k2 + M̄2)−1

→ IR
2 =

1
(4π)2

T2(
µ2

M2
c

) (97)

I0 =
∫

d4k

(2π)4
(k2 + M̄2)−2

→ IR
0 =

1
(4π)2

T0(
µ2

M2
c

) (98)

with the consistent conditions [10]

IR
2µν =

1
2
gµνIR

2 , IR
0µν =

1
4
gµνIR

0 (99)

where L2 and L0 are given in text. The superscript ‘R’
means regularized one.

With these analyses, the effective chiral Lagrangian
can be systematically obtained in the expansion of mo-
mentum and current quark masses by transforming back
to the Minkowski spacetime. In the text, we only kept
those terms needed for our purpose in the present paper.
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